26 resultados para 111207 Molecular Targets

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soybean isoflavonoids have received significant attention due to their potential anticarcinogenic and antiproliferative effects and possible role in many signal transduction pathways. However, their mechanisms of action and their molecular targets remain to be further elucidated. In this paper, we demonstrated that two soybean isoflavones (genistein and daidzein) reduced the proliferation of the human colon adenocarcinoma grade II cell line (HT-29) at concentrations of 25 and 50-100 mu M, respectively. We then investigated the effects of genistein and daidzein by RT-PCR on molecules that involved in tumor development and progression by their regulation of cell proliferation. At a concentration of 50 mu M genistein, there was suppressed expression of beta-catenin (CTNNBIP1). Neither genistein nor daidzein affected APC (adenomatous polyposis coli) or survivin (BIRC5) expression when cells were treated with concentrations of 10 or 50 mu M. These data suggest that the down-regulation of beta-catenin by genistein may constitute an important determinant of the suppression of HT-29 cell growth and may be exploited for the prevention and treatment of colon cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leaf-cutting ants belonging to the genus Atta occur from the tropical to subtropical regions of the Americas. These insects are considered pests because they cause serious damage in agricultural areas. Among these, stands out Atta laevigata, species which the colony requires a huge amount of leaves to grow its symbiotic fungus which is the main food source of the nest. Thus, the study of the transcriptome of these ants becomes a useful tool, because it is possible to identify proteins potentially involved with their skills as insect pests and also those related to differences between the varieties present in the nests. In the present study we described results of the partial analysis of the transcriptome of the leaf-cutting ant pest A. laevigata, from cDNA sequences previously generated in the Laboratory of Evolution and Molecular (LEM). The results may also be used for molecular, ecological, metabolic and evolutionary studies about ants, and heterologous expression of important proteins as molecular targets for the control of some leafcutting agricultural pests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The canis lupus familiares is the only species besides human that spontaneously develop prostatic carcinoma (PCa). In addition, the metastatic sites are similar to those frequently reported in men. For these reasons, the dog is the best natural model to study the molecular mechanisms in PCa development providing a natural animal model for treatment by molecular targets. Previously, we investigated copy number alterations by arrayCGH (Canine Genome CGH Microarray 4x44K-G2519F, Agilent Technologies) in canine prostatic lesions: 3 benign prostatic hyperplasias (BPH), 4 proliferative inflammatory atrophies (PIA), and 14 PCa. Five histologically normal prostatic tissues were used as reference. Genomic alterations were evaluated using Genomic Workbench Standard Edition 5.0.14. This previous study revealed significant copy number losses of Atm and Pten exclusively in PCa. In the present study, ATM and PTEN immunoexpression were investigated using a tissue microarray (TMA) containing 149 canine prostatic paraffin-embedded lesions (BPH, PIA and PCa) collected from 67 animals. Immunohistochemical reactions were performed using the polyclonal rabbit antibody anti-PTEN (Santa Cruz Biotech, 1:50) and anti-ATM (Abcam, 1:50). The sections were developed with diaminobenzidine (DAB) and peroxidase. The immunohistochemical staining was assessed in each core by the distribution of positive cells for each antibody per lesion (score 1: <25% cells positive, 2: 26% to 50%, 3: being 51% and 75% and 4:> 75%) and intensity (1: weak, 2: moderate, 3: intense). Chi-square or Fisher exact test was used to determine the association between the categorical variables using GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA). Distribution of positive cells did not differ among lesions. PCa and PIA showed more samples with weak intensity for ATM when compared to normal prostatic tissue and BPH (PCa: p=0,032 and PIA: p=0,025). Benign prostatic hyperplasia and normal samples presented intense PTEN immunostaining than PCa (p=0,021) and PIA (p=0,0013). These results suggest that ATM and PTEN proteins expression in canine prostatic carcinoma are downregulated possibly by copy number losses. These findings are similar from those described in prostate carcinomas from human corroborating for the use of dogs as a natural model to study prostatic disease in men.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mast cell tumor (MCT) is the second most common type of tumor in dogs. It is characterized by uncontrolled proliferation of mast cells in the skin. Treatment involves surgical resection, chemotherapy and radiotherapy. Recently, new treatment protocols have been developed, such as the use of tyrosine kinase inhibitors. With the increasing knowledge about the genome and the evolution of methods in molecular genetics, drugs with specific molecular targets are surely going to become promising therapeutic modalities in the near future. Besides being involved in the normal cell cycle, some studies suggest that tyrosine kinases have a fundamental role in neoplastic processes. Therefore, some strategies such as the development of antibodies anti-receptors for tyrosine kinases and small-molecule tyrosine kinase receptor inhibitors have been developed in an attempt to inhibit tumor development. The purpose of this review is to describe the use of tyrosine kinase inhibitors in the treatment of mast cell tumors in dogs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural characterization of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design since some of these proteins may be present in the bacterial genome, but absent in humans. Thus, metabolic pathways became potential targets for drug design. The motivation of this work is the fact that Mycobacterium tuberculosis is the cause of the deaths of millions of people in the world, so that the structural characterization of protein targets to propose new drugs has become essential. DBMODELING is a relational database, created to highlight the importance of methods of molecular modeling applied to the Mycobacterium tuberculosis genome with the aim of proposing protein-ligand docking analysis. There are currently more than 300 models for proteins from Mycobacterium tuberculosis genome in the database. The database contains a detailed description of the reaction catalyzed by each enzyme and their atomic coordinates. Information about structures, a tool for animated gif image, a table with a specification of the metabolic pathway, modeled protein, inputs used in modeling, and analysis methods used in this project are available in the database for download. The search tool can be used for reseachers to find specific pathways or enzymes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DBMODELING is a relational database of annotated comparative protein structure models and their metabolic, pathway characterization. It is focused on enzymes identified in the genomes of Mycobacterium tuberculosis and Xylella fastidiosa. The main goal of the present database is to provide structural models to be used in docking simulations and drug design. However, since the accuracy of structural models is highly dependent on sequence identity between template and target, it is necessary to make clear to the user that only models which show high structural quality should be used in such efforts. Molecular modeling of these genomes generated a database, in which all structural models were built using alignments presenting more than 30% of sequence identity, generating models with medium and high accuracy. All models in the database are publicly accessible at http://www.biocristalografia.df.ibilce.unesp.br/tools. DBMODELING user interface provides users friendly menus, so that all information can be printed in one stop from any web browser. Furthermore, DBMODELING also provides a docking interface, which allows the user to carry out geometric docking simulation, against the molecular models available in the database. There are three other important homology model databases: MODBASE, SWISSMODEL, and GTOP. The main applications of these databases are described in the present article. © 2007 Bentham Science Publishers Ltd.